
  
Abstract—In this paper, an application of a neuro-fuzzy 

modeling approach is presented in order to characterize the 
essential behavior of enzymatic esterification processes. The 
accuracy of the developed model was validated by comparing 
the response of the model and actual experimental data. The 
simulation results showed good generalization of the proposed 
model and its ability to predict the reaction yield, where the 
error of prediction for training data was less than 3%, and for 
validating and testing data less than 3 and 1.5%, respectively. A 
model-based optimization was performed to obtain the best 
operating conditions by using genetic algorithm. A fair 
comparison between the optimization results obtained from 
simulation experiments and laboratory data indicated the 
accuracy and feasibility of the proposed approach for 
estimating the optimal profiles in biotechnological processes. 
This can further facilitate up-scaling of the process by selecting 
the appropriate combinations of potential manufacturing 
parameters. 
 

Index Terms— Enzymatic esterification, experimental data, 
model-based optimization, fuzzy logic system, clustering 
approach, genetic algorithm.  
 

I. INTRODUCTION 
Optimization is one of the important stages of the 

engineering design process. It increases the efficiency of the 
process without increasing the cost and material consumption 
thus improving the benefit-cost ratio both economically and 
environmentally [1], [2]. Chemometric methods are very 
helpful in increasing the performance and reliability of 
process optimization. They are used to study various 
parameters using a small number of experiments [3]. 

The inherent non-linear and unpredictable behavior of 
biotechnological processes makes them extremely complex. 
The conventional methods that are based on mathematical 
optimization techniques (such as response surface 
methodology, RSM) consider only local optimization and 
have some problems like screening for principal parameters 
and assuming a uni-model objective function [2]. In recent 
years, applications of artificial intelligence (AI) to biotechno- 
logical processes are growing rapidly. Knowledge-based 
approaches including artificial neural networks (ANNs), 
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fuzzy logic (FL) and genetic algorithms (GAs) have been 
introduced as powerful tools for dealing with nonlinearity 
and uncertainties [4]. 

The combination of ANNs and FL techniques makes 
neuro-fuzzy (NF) systems a very flexible option for 
optimization applications [5]. The essential behavior of 
biological processes can be characterized by using these 
systems based on gathered information from experiments. 
Fuzzy logic-based models have the advantages of high 
approximation ability and interpretability. They can be 
developed easier than mathematical models and are able to 
handle nonlinear systems [6]. Fuzzy classification techniques 
have already been applied to several biochemical processes 
such as modeling of the kinetics in enzymatic hydrolysis of 
penicillin-G [7], modeling and optimization of fed-batch 
fermentation processes [8,9], fuzzy classification of 
microbial biomass and enzyme activities for evaluating soil 
quality [10], and modeling changes in biomass composition 
during bioethanol production from lignocellulosic materials 
[11]. 

The high cost of preparing training data is a great problem, 
where many different experiments are required to be 
performed. However, employing small datasets for 
developing fuzzy models may cause over-fitting difficulties. 
Clustering approaches have been proposed to define the 
structure of fuzzy systems and to reduce the tunable 
parameters of fuzzy models with minimum losses in the 
accuracy [12]. 

In recent years, evolutionary computation approaches, 
such as GAs, has been investigated as an effective approach 
in optimization of bioprocess engineering problems. Genetic 
algorithms are non-model based optimization methods with 
the ability to find globally the optimum solutions in complex 
multidimensional search spaces [13]. They work based on the 
concepts of natural selection and evolution of biological 
species. 

Several applications of the GAs for optimization of the 
biotechnological processes are presented in the literature. 
Muffler et al. [14] have reported a successful application of 
GA for optimization of halogenase enzyme activity for 
catalyzing the region-selective formation of carbon halogen 
bonds in the manufacturing of serotonin precursors. An 
application of GA for optimization of enzyme-catalyzed 
synthesis of o-glycan core-2 structure in a multi-enzyme 
system has been also presented by Hoh et al. [15]. By using 
this method, the selectivity of product formation at the 
maximum point was doubled. Such techniques allow 
scientists to perform experiments that would not be possible 
in the real world, and to simulate phenomena that are difficult 
to capture and analyze [16]. 
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In recent years, the use of enzymes, as ‘‘green’’ 
alternatives to chemical catalysts, in organic synthesis has 
increased extensively due to several advantages such as mild 
reaction conditions, high selectivity and specificity, low 
energy requirement, ease of product isolation, and biocatalyst 
reusability [17]. In this study, di-isobutyl adipate has been 
synthesized through lipase-catalyzed esterification of 
isobutyl alcohol with adipic acid. Adipic acid esters are used 
in a variety of applications, as solvent, plasticizer, lubricant 
and also in paint strippers, adhesives, perfumes, cosmetics, 
coatings, and gear and transmission oils [18]. 

In the present work, first a neuro-fuzzy model was 
developed for enzyme-catalyzed esterification process based 
on experimental data. In order to reduce the number of rules, 
fuzzy c-means (FCM) clustering algorithm was employed to 
define the structure of the fuzzy model, where the parameters 
of fuzzy rules were adjusted by least-squares methods. 

In the next part of the study, the effects of reaction 
parameters on the degree of esterification were evaluated and 
the best operating conditions were obtained by conducting a 
model-based optimization using GA technique. The 
optimization was performed for global and constrained 
solutions by searching through the parameter space. The 
results obtained were compared with actual data from 
experiments to validate the accuracy of optimized parameters. 
It should be noted that so far there are few studies on using a 
combination of individual modeling approaches for 
enzymatic esterification. 

 

II. MATERIALS AND METHODS 

A. Materials 
Candida antarctica lipase B immobilized on a 

macroporous acrylic resin (specific activity 10000 PLU/g; 
water content 1.4%), Novozym® 435, was purchased from 
NOVO Nordisk A/S (Bagsværd, Denmark). 

Isobutyl alcohol (2-methylpropan-1-ol) and adipic acid 
were purchased from Merck Co. (Darmstadt, Germany). All 
other chemicals and solvents used in this study were of 
analytical grade. 

B. Process Description 
Different molar ratios of adipic acid and isobutyl alcohol 

were mixed corresponding to the different substrate molar 
ratios generated by a four-factor-five-level central composite 
design (CCD). CCD is an efficient statistical design with a 
hypercube geometry region which is generally used for 
decreasing the number of experiments while maintaining 
statistical significance [19]. Five milliliter of hexane was 
added as solvent. Different amounts of lipase were 
subsequently added. The reaction was performed at different 
temperatures and for different time periods. The 
esterification reaction is represented by Scheme 1 

C. Analysis and Characterization 
The reaction was terminated by dilution with 5 (mL) of 

ethanol: acetone (50:50 v/v) and the immobilized lipase was 
removed by filtration. Remaining free acid in the reaction 
mixture was determined by titration with 0.1 (M) NaOH 

using phenolphthalein as the indicator.  
 

Nomenclature
c number of the clusters 

cmax maximum number of clusters 
e error 
r weighting exponent of membership 
u membership degrees 
v cluster centers 
w fulfillment degree of fuzzy rules 
w relative fulfillment degree of fuzzy rules 
x fuzzy system input 
y fuzzy system output 
y weighted consequences 
z unlabeled dataset for clustering 

  
Ai,j membership functions 
D distance 
Jm clustering objective function 
JQ optimization objective function 
JXB clustering validation index 
Ri fuzzy rule number 
U membership degrees matrix 
V cluster centers vector 

  
Abbreviation

AAD average absolute deviation 
AI artificial intelligence 

ANFIS adaptive neuro-fuzzy inference system 
ANN artificial neural network 
CCD central composite design 
FCM fuzzy c-means clustering 
FL fuzzy logic 
GA genetic algorithm 

GCMS gas chromatography/mass spectroscopy 
LSE least-squares estimation 

MISO multi input single output system 
NF neuro-fuzzy 

RSM response surface methodology 
SMR substrate molar ratio 
TSK Takagi-Sugeno-Kang type fuzzy system 

  
Greek letters 

σ the center of Gaussian membership function
Γ weighted input dataset matrix 
Θ consequent parameter matrix 

 
Scheme 1.  Esterification of adipic acid with isobutyl alcohol 

 
The moles of acid reacted were calculated from the values 

obtained for the control (without enzyme) and the test 
samples. The ester formed was expressed as equivalent to 
conversion of the acid [19]. Production of ester was 
characterized by FT-IR (Perkin Elmer, USA, model 1650) 
with absorption bands of C=O bend of ester at 1732 (cm-1), 
and C-O stretching vibrations at 1162 (cm-1). Product was 
also monitored by gas chromatography/mass spectroscopy 
(GCMS) on a Shimadzu (model GC 17A; model MS 
QP5050A; Shimadzu Corp, Tokyo, Japan) instrument with a 
BPX5 column (0.25 (mm) × 30 (m), 25 (micron)). According 
to GCMS results, the reaction gave exclusive diester. The 
mass spectrum of the product showed molecular ion at m/z 
258 that corresponded to molecular formula C14H26O4. The 
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two important ion peaks were related to the formation of ion 
asilium, [RCO]+, that gave the fragment ion at m/z 185 
(because of the loss of alkoxy group from the ester, R-O) and 
the fragment ion at m/z 129 [O-CO-(CH2)4-C=OH]+ 
because of the rearrangement of the alkyl portion of the 
molecule. Other bonds cleavage occurred through some 
pathways and gave fragments ions at m/z 156, 111, 57, and 
41. 

 

III. PROCESS MODELING 

A. Input-Output Selection 
To obtain an accurate and reliable model, it is necessary 

that an appropriate dataset for the input variables be 
determined. It is suggested that all possible combinations of 
the low-dimensional fuzzy model be considered and 
evaluated to find the dominant input variables [20]. Here, a 
set of variables including temperature, time, enzyme amount 
and substrate (isobutyl alcohol: adipic acid) molar ratio 
(SMR) was chosen as the input parameters based on the 
previous studies [19]. The input/output vectors for the model 
can be presented as follows, 

 Yield ]Output = [
MR. ]amount   SEnzyme   Time   TempInput = [ .            (1) 

By performing some experiments on the real process, the 
training and validating databases including 42 and 5 sets of 
operating points are prepared, respectively. 

B. Neuro-Fuzzy Structure 
In this section, a nonlinear model based on neuro-fuzzy 

modeling techniques is developed for the esterification 
process. Neuro-fuzzy systems have a flexible mathematical 
structure that combines the learning capability of neural 
networks and the reasoning ability of a fuzzy rule-based 
system. A well-known architecture extensively used for 
nonlinear system identification is adaptive neuro-fuzzy 
inference system (ANFIS). The Sugeno fuzzy models (also 
known as TSK fuzzy models) developed by Takagi, Sugeno 
and Kang are particularly employed as the core of the ANFIS, 
due to their capability to describe nonlinear systems behavior 
by rather small number of parameters [21][22]. In the first 
order TSK model, the consequent is an affine linear function 
of the input variables, which can be expressed by a set of 
typical if-then rules as follows [23],  

ji,ji,i,i

i,jji,i

xb...xbbythen

Aisxand...andAisxif:R

+++= 110

11                                              

(2) 

where Ai,j is the ith membership function associated with jth 
input variable xj and  bi,j , for i=0,1,2,…,n, are tunable 
parameters of fuzzy consequents. In this structure, a linear 
combination of the input variables is considered as the 
conclusion functions of fuzzy rules. The ANFIS architecture 
for first order Sugeno model for a multi-input single-output 
(MISO) system is presented in Figure 1. The firing degrees of 
the fuzzy rules are calculated through the five layers of the 
model.  

In layer 1, the input signals to model are fuzzified by input 
nodes, and the membership degree of fuzzy sets {Ai,j} are 
calculated. Here, the membership functions Ai,j are 
considered to be Gaussian that is specified by the center v and 
the spread σ as presented in Eq. (3). 

       )))((exp()( 2
i,ji,ji,j /σx-v-=x A                     (3) 

 
Fig. 1. ANFIS architecture for first order TSK model 

 
In layer 2, the fulfillment degree of rules are calculated by 

multiplying the output values of all membership functions 
that come from layer 2 as follows,  

∏
=

=
n

j
jjii xAw

1

)(,
                              (4) 

In layer 3, the firing strength of each rule is calculated by 
normalizing corresponding degree of fulfillment with respect 
to the summation of fulfillment degrees of all rules. 

∑
=

=Ν=
c

i
iiii wwww

1
/)(                               (5) 

In which, c is the number of membership functions for 
each input. The consequence of each rule is calculated by 
multiplying the corresponding rule in its relative degree of 
fulfillment in layer 4 as follows, 

)( ji,ji,i,iiii xb...xbbwywy +++== 110
                (6) 

Finally, in layer 5, the output of the net or the fuzzy system 
is calculated by adding all incoming weighted consequences, 

∑
=

=
m

i
iyy

1

                                       (7) 

The parameters of membership functions and fuzzy 
consequents can be adjusted by ANFIS method with respect 
to given input-output training data patterns. The main 
concern in this regard is that by increasing the number of 
membership functions, the number of parameters that have to 
be tuned would increase.  In this case, employing a small 
database for adjusting entire parameters may cause that the 
model becomes over-fitted. To deal with this problem, it is 
possible to use clustering techniques in order to reduce the 
number of fuzzy rules. One of the most commonly used 
clustering approaches is fuzzy c-means (FCM) [24]. This 
technique was originally proposed by Dunn [25] and later 
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extended by Bezdek [26]. In this approach, the system’s 
operating space is partitioned into several operating regions, 
where each rule would represent a local linear model at the 
corresponding regime [12]. In this case, the TSK fuzzy 
models are able to approximate the nonlinear systems by 
performing an interpolation of local linear models via their 
inference mechanism. 

C. Fuzzy Partitioning and Structure Identification 
In this section, FCM is employed to define the structure of 

fuzzy models. This consists of estimating the location of 
cluster centers and defining the corresponding fuzzy rules of 
each cluster. The FCM algorithm partitions the dataset into c 
predefined subsets through optimizing an objective function, 
which indicates the desirability of each c-partition. The data 
partitioning into clusters depends on similarity/dissimilarity 
of each cluster member, which is generally defined by the 
distance of data points from cluster centers [27]. 

Let D(vi,zk) be the distance between vi and zk, where 
{vi}⊂Rs and {zk}⊂Rs are the vector of cluster centers and 
unlabeled dataset, respectively. Then, the following objective 
function should be minimized to find the best possible 
solution [26],  

∑∑
= =

=
m

k

c

i
ik

rk
i DuVUJMinimize

1 1

2)()(),(:                (8) 

where ui
k is the membership of the k th data point in the i th 

cluster and m is the number of data points. The weighting 
exponent r (1 ≤ r < ∞) controls the degree of fuzziness of 
membership of each datum. Minimization of J is performed 
by considering the following constraints on the membership 
values, which would lead to the optimal partition.  

101

11

1
≤≤=

=∀=∀

∑ =
k
i

c

i
k
i uandu

cimk ,...,...
             (9) 

The optimal positions of cluster centers and corresponding 
membership degree can be captured from (10) and (11) via an 
iterative procedure.  
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The iteration would be stopped when no further 
improvement is observed in J(U,V). In general, it is expected 
that by increasing the number of cluster centers, the accuracy 
of model would increase. However, in order to avoid model 
over-fitting and the excessive computational costs, it is 
recommended that the number of clusters be defined 
automatically [28]. Many different validity indices are 
suggested for this regard. A validity function that performed 
well in practice was proposed by Xie and Beni [29]. This 
function depends on the total variance of geometric distance 
measure and the separation of the cluster centers, which is 
defined by,   
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The optimum number of cluster centers can be captured 
through an iterative procedure. Here, some modifications are 
considered in implementing strategy in order to increase its 
performance.  

Here, the maximum number of clusters is chosen to be 
cmax= m -0.5. In batch mode training, the cluster centers vector 
V={vi} and the membership degree matrix U={ui

k} are 
calculated with respect to the optimal number of cluster 
centers. The flow chart for data clustering and fuzzy 
partitioning algorithm is presented in Figure 2. By capturing 
Uopt and Vopt , the parameters and structure of fuzzy models 
can simply be defined. 

 

 
Fig. 2. Flow chart for the data clustering by FCM 

 

D. Consequent Parameter Adjustment 
By defining the fuzzy membership functions and 

corresponding fuzzy rules, the main requirement is that the 
parameters of fuzzy rules be adjusted. For this aim, 
least-squares estimation (LSE) technique is employed for 
adjusting the parameters of consequent based on 
experimental data. For each input-output pattern, Eq. (6) can 
be written as,  

iiiy ΘΓ= .                                      (13) 
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All input–output patterns can be defined as below 

1111 ×++×× ΘΓ= ncncMMY )()( .                                  (15) 
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In this case, the parameters of consequent can be obtained 
by minimizing the squared error as follows,  

YT ΓΓΓ=Θ −1)(                                               (16) 

In order to increase the performance of the training stage, a 
conventional normalization is adopted by dividing the input 
and output data by maximum value of each variable to scale 
data into the range of [0, 1]. This ensures that none of the 
variables is dominant over the others during the training 
phase. 

The model training process was performed via FCM and 
LSE in MATLAB ® (Ver. 7.1) programming environment 
and simulated by MATLAB Simulink® (Ver. 7.5). 

 

IV. PROCESS OPTIMIZATION 
The best operating conditions of the esterification process 

can be captured by conducting a model-based optimization 
approach. For this purpose, the main requirement is a model 
that describes the process behavior, an optimization 
methodology, and a goal defined by a fitness function. In this 
regard, the fuzzy model developed in the previous section is 
used to predict the process output, where genetic algorithm 
(GA) was chosen for optimization. GAs work based on the 
evolutionary principles, which have many advantages over 
the conventional optimization methods. In the cases that there 
are no guidelines to optimize a process with different 
parameters, GAs would be an appropriate tool to find an 
optimal solution or at least an answer close to the best one. 
GAs are capable to search globally for the optimal solution 
by checking a vast collection of answers. The optimization 
was performed by using MATLAB® Optimization Toolbox 
(Ver. 5.0). 

 

V. RESULTS AND DISCUSSION 

A. Model Development 
The proposed modeling algorithm is applied to training 

dataset. The implementation of this algorithm is preformed in 
two stages: 1) identifying the fuzzy model structure by means 
of fuzzy c-mean clustering, 2) identifying the parameters of 
fuzzy consequents using least- squares estimation method.   

It is noted that each cluster would lead to one fuzzy rule; 
therefore, adopting a limited number of clusters can help to 
reduce the number of necessary fuzzy rules. However, the 
accuracy of the developed model is dependent on the number 
of clusters. As it is illustrated in Figure 2, the validation index 
is evaluated in an iterative process when c changes from two 
to m -0.5, where FCM is run at each step. The estimated values 
of validity function, JXB, are 0.1533, 0.1465, 0.1077, 0.1780, 
0.1512 and 0.1527 for 2, 3, 4, 5, 6 and 7 clusters, respectively. 
The obtained results indicate that considering four cluster 
centers are adequate in order to cover the entire range of the 
variable changes. In Figure 3, the changes of validation 
function during clustering process, the fuzzy partition for 
four clusters and the corresponding centroids of each cluster 
are shown. By obtaining the optimal number of clusters, the 
positions of cluster centers and corresponding membership 

function, the structure of fuzzy model can be defined. In 
Table I, the characteristics of the neuro-fuzzy model are 
presented. 

 

 
Fig. 3. The values of validity index and optimal cluster centers 

 

 
Fig. 4. Experimental and predicted values of the esterification yield with 

respect to (A) training data (B) validating data, and (C) testing data 
 

TABLE I. CHARACTERISTICS OF THE NEURO-FUZZY MODEL 
Variable Value/type 
Fuzzy type Sugeno 
Inputs/outputs 4/1 
Number of clusters (fuzzy rules) 4 
And method Product 
Or method Probabilistic or 
Implication method Product 
Aggregation Sum 
Defuzzification Weighted average 

 
Then, it is possible to adjust the parameters of consequent 

by minimizing the squared error with respect to experimental 
data. The parameters of the input membership functions and 
the consequences are presented in Appendix A. The 
developed model is validating by performing a comparison 
between the responses of the model and experimental data.  

In Figure 4(A), the experimental and predicted values of 
the esterification yield with respect to training data are 
presented. The obtained results indicate that the responses of 
the developed model are very close to the actual data.  

In addition, by defining the error as the difference between 
the response of the model and experimental values, the error 
functions are evaluated as the efficiency indices for the 
model. In Table II, the error functions are listed as upper 
bound error Max(|e|), lower bound error Min(|e|), mean of 
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error Mean(e), average absolute deviation AAD(e) and 
coefficient of determination R2. 

 
TABLE II. MODEL ERROR FUNCTIONS FOR THE TRAINING, VALIDATING AND 

TESTING DATA 
Data type Max (|e|) Min (|e|) Mean (e) AAD R2 
Training 1.9684 0.0039 4.5e-6 0.7733 0.9955 
Validating 2.4906 0.8562 -0.4982 1.5242 0.9721 

Testing 1.1102 0.3979 0.2172 0.6394 0.9925 

 
It is necessary that different datasets be used for validating 

the accuracy and generalization of the models. In Figure 4(B), 
a comparison between the responses of the developed model 
and the corresponding validating data is shown. In addition, 
the estimated error functions are presented in Table II. The 
results indicate the accuracy of the developed model that is 
able to interpolate between data points. 

For the last evaluation step, the performance of the model 
is evaluated with respect to testing data (Table II). The 
experimental and predicted values of the esterification yield 
with respect to testing data are plotted in Figure 4(C), which 
shows the degree of accuracy of the developed model for 
predicting the original output at different conditions.  

A comparison between the developed neuro-fuzzy model 
and a quadratic response surface (RSM) model, which used 
for modeling of the enzymatic synthesis of di-isobutyl 
adipate [30], indicates superior data fitting and prediction 
capability of the NF for the testing dataset. The R2 and AAD 
values for the RSM testing dataset were 0.8928 and 2.5619, 
respectively. Generally, in many simplified models such as 
RSM, the effects of some parameters on the response are not 
considered, that leads to an increase in the error value 

B. Effect of Parameters 
The fuzzy surfaces for the developed model are presented 

in Figure 5 that shows changes of the model output (ester 
yield) with respect to the inputs variations. Thus, finding the 
best possible conditions through optimization would be easy. 
As illustrated in Figure 5(A), at low substrate molar ratio, the 
yield increases with increase in incubation time up to a 
certain amount and thereafter decreases due to the hydrolysis 
of produced ester by accumulated water (by-product of 
esterification reaction). By increasing the amount of 
substrates, the reaction yield increases and maximum yield is 
obtained at maximum time and substrate molar ratio.  

Figure 5(B) shows the effect of time, enzyme amount and 
their mutual interaction on the ester synthesis, while 
temperature and substrate molar ratio are constant at their 
centre points (0.769 and 0.563 (normalized values), 
respectively). The yield increases with increase in enzyme 
amount. In fact, greater amounts of enzyme enhance the 
formation of the acyl-enzyme complex to produce the ester. 
This result can also be seen in Figure 5(C) that shows the 
effect of varying enzyme amount and temperature on the 
synthesis of adipate ester at constant substrate molar ratio and 
time (0.563 and 0.536, respectively). At low amount of 
enzyme, the yield increases with increase in temperature that 
promotes acceleration in the rate of reaction [31]. Higher 
reaction temperatures cause enzyme inactivation due to 
denaturation process that can be compensated by using 

higher concentrations of enzyme. Figure 5(D) shows that the 
effect of substrate molar ratio on the reaction yield is more 
significant than temperature. In fact, the presence of larger 
amounts of substrate increases the probability of substrate 
and enzyme collision [32]. Increase in the yield with 
increasing alcohol:acid molar ratio can also be assigned to 
better solubility of the solid acid in higher amounts of alcohol, 
and reduction of viscosity of the reaction mixture. 

C. Optimum Conditions 
In order to increase the performance of the optimization 

process, the parameters such as population size, number of 
generation, crossover and mutation rates have to be chosen 
appropriately. The proposed parameters for optimization are 
presented in Table III.  
 

TABLE III. OPTIMIZATION PARAMETERS FOR GA 
Parameters Value 
Population Size 20 
Crossover 0.8 / Intermediate 
Mutation Rate 0.1 / Uniform 
Generation 20 - 30 
Selecting Stochastic Uniform 

 

 
Fig. 5. Fuzzy surfaces for the developed model 
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It is possible to arrange different selections to achieve 

maximum yield. However, the required enzyme amount 
should be minimized in order to make the process more 
economical. The fitness function can simply be defined as the 
absolute difference between the target output equal to 100% 
yield and the model output at each sequence or generation, as 
follows, 

yieldJQ −= 100                              (17) 

This function is employed for the global and unconstrained 
searching.  

 
TABLE IV. VARIOUS COMBINATIONS OF PARAMETERS FOR ACHIEVING 

MAXIMUM YIELD 
Temp. 
(oC) 

Time 
(min) 

Enzyme amount 
(mg) SMR JQ Actual yield 

(%) 
52.6 339.9 310.6 6.5 1e-4 97.0 
56.5 334.5 280.2 6.3 8e-6 98.7 
56.8 303.8 304.8 5.9 2e-5 99.3 

 
TABLE V. OPTIMUM CONDITIONS FOR LIPASE-CATALYZED SYNTHESIS OF 

DI-ISOBUTYL ADIPATE ESTER 
Temp. 
(oC) 

Time 
(min) 

Enzyme amount 
(mg) SMR JQ Actual yield 

(%) 
58.1 196.8 133.9 5.9 0.067 98.8 
55.8 282.9 20.0 7.0 0.090 97.8 
63.7 130.0 20.0 7.4 0.170 97.3 

 
In Table IV, three of the best optimum conditions obtained 

after performing various optimizations through global 
searching are presented. As can be seen in the Table IV, a 
high amount of enzyme is still required and the reaction time 
is long.  

In order to deal with this problem, further limiting factors 
have to be considered in the objective function as follows,  

2

2
1 QJQ =                           (18) 
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and 
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In this function, the reaction yield and enzyme amount are 
considered at their maximum and minimum values 
respectively, where the other parameters are considered at 
their center points (Temp.= 50 (oC), Time= 225 min, 
SMR=4.5). The optimal reaction conditions can be attained 
by minimizing the fitness function JQ. The obtained results 
from performing a number of GA-based searches are 
presented in Table V. The actual data taken from laboratory 
experiments can indicate the optimal combination of 
parameters to achieve the maximum percentage yield equal to 
98.8%.  

Optimization was also performed to find the best possible 

conditions where the amount of enzyme is at its lowest level, 
20 mg (Table V). In this case, Q is defined as follows,  
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In order to validate the accuracy of the optimization result, 
an experiment with the same parameter values was carried 
out in the laboratory. Obtained result shows a good 
agreement between the predicted and actual data. The actual 
yield obtained is 97.8% where the error is about 2.2%.  

In addition, the optimal condition for achieving minimum 
required time (130 min) and minimum amount of enzyme (20 
mg) are obtained, where Q is defined as follows, 
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The result is presented in Table V. The actual yield 
obtained from experiment is 97.3%. The corresponding error 
at this condition is less than 3% 

 

VI. CONCLUSIONS 
Neuro-fuzzy modeling of immobilized Candida antarctica 

lipase B-catalyzed synthesis of di-isobutyl adipate ester was 
successfully performed. The structure and parameters of the 
model was defined based on the gathered information from 
experiments using clustering methods. In this approach, the 
fuzzy c-mean (FCM) clustering technique was employed to 
define the location of cluster centers and the corresponding 
fuzzy rules of each cluster, where the parameters of 
consequent were adjusted by least-squares estimation 
methods. This helps to reduce the number of necessary fuzzy 
rules. The optimal number of the cluster centers is captured 
by performing a trial-and-error procedure. The simulation 
results show a small deviation between the models predicted 
values and the experimental data. A genetic algorithm was 
applied to the developed model for solving the optimization 
problem. The results obtained from simulation experiments 
and actual data indicates that the proposed approach can be 
suitably employed to estimate the optimal conditions in 
enzymatic esterification processes. The method can be used 
to deal with the difficulties of developing detailed models for 
biotechnological processes optimization. 

 

APPENDIX A. 
The parameters of input membership functions and fuzzy 

consequence for the developed model are presented in Tables 
A.I and A.II, respectively.   

 
TABLE A.I. THE PARAMETERS OF INPUT MEMBERSHIP FUNCTIONS 

vi,1 σi,1 vi,2 σi,2 vi,3 σi,3 vi,4 σi,4 
i=1 0.786 0.079 0.616 0.143 0.439 0.179 0.549 0.097
i=2 0.779 0.080 0.633 0.138 0.719 0.153 0.559 0.120
i=3 0.780 0.071 0.3165 0.153 0.489 0.117 0.426 0.136
i=4 0.724 0.049 0.416 0.099 0.226 0.157 0.748 0.105
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TABLE A.II. THE PARAMETERS OF FUZZY CONSEQUENCES 

 bi,0 bi,1 bi,2 bi,3 bi,4 
i=1 0.501 0.219 -0.031 0.335 0.309 
i=2 0.443 0.137 0.165 0.282 0.121 
i=3 0.031 -0.055 0.657 0.083 0.984 
i=4 0.927 -0.184 0.640 -0.030 -0.148 
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