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Abstract— The A H1N1 2009 influenza that started in Mexico 

in early April 2009 ultimately spread over the entire globe 
within a matter of a few months. Malaysia reported its first 
confirmed A H1N1 2009 infection on 15 May 2009. The 
infection persisted for 23 weeks, peaking at week 12, with a total 
of about thirteen thousand infections, with residual infections 
continuing until today. Many countries are concerned over the 
potential of a more severe second wave of H1N1 and have put in 
place contingency plan to mitigate this H1N1 threats should 
they occur. This paper presents the model FluSiM developed to 
simulate A H1N1 2009 in Malaysia. Simulation results for H1N1 
2009 in Malaysia indicate that the basic reproduction number 
varied between 1.5 and 2.5. The on-going enhancement of 
FluSiM will improve on its robustness in order to permit 
integrated surveillance and simulation of future pandemic 
influenza. 
 

Index Terms—FluSiM, H1N1 model, Malaysia.  
 

I. INTRODUCTION 
The A H1N1 2009 influenza pandemic occurred some 

forty years after the most recent Hong Kong Flu pandemic in 
1968-1969. This forty year gap is a source of concern to the 
medical profession. Some are of the view that the next 
pandemic is imminent. The most severe influenza pandemic 
known so far is the 1918-1919 Spanish Flu (A-H1N1), which 
was reported to have caused about 40 to 50 million deaths 
worldwide [1]. The other two twentieth century pandemics, 
the 1957-1958 Asian Flu (H2N2) and 1968-69 Hong Kong 
Flu (H3N2) caused one million deaths. The recorded daily 
and cumulative numbers of hospital notifications in Geneva, 
Switzerland for the 1918 pandemic indicated two waves of 
consecutive infections, each lasting about 70 days or 10 
weeks from beginning to end. The more severe form 
occurred as a second wave during the winter months, soon 
after the apparent end of the first wave around 10 September 
1918. The occurrence of a second more severe pandemic 
wave in Geneva in 1918 provided the basis to theorize on the 
possibility of a second wave during the A H1N1 2009 
pandemic. The frequency of pandemic has been reported to 
be about three in one century. The last pandemic occurred in 
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1968, about 43 years ago. Based upon this statistics it is not 
surprising that WHO is concerned that the A H1N1 2009 
might evolve into the next pandemic.  

The A H1N1 2009 influenza that started in Mexico in 
April 2009 [2] ultimately spread to Malaysia. For Malaysia, 
Fig. 1 shows the number of H1N1 weekly infections reported 
in Malaysia from week 22 of 2009 to week 11 of 2010, 
available from the Malaysian Ministry of Health (MOH), 
with the first case confirmed on 15 May 2009. The bell-shape 
infection curve strongly suggests that the A H1N1 infections 
can be modeled by the well-known SIR model. Details 
regarding the SIR model will be presented later.  

 
Figure 1.  Number of influenxa A(H1N1) infections reported by MOH. 

Referring to Fig. 1, the infections began on week 22, 
peaked on week 34 and ended on week 45 of 2009, with 
residual cases reported since then till the time of completion 
of this paper (February 2011). Hence, the infection peaked 
after 12 weeks or 84 days after the first reported case and 
lasted 23 weeks. The overall shape of Fig. 1 fits well with 
influenza infection curves modeled by the SIR models [3], in 
which S refers to the Susceptible, I the Infected and R the 
Recovered. In this paper, we model the A H1N1 2009 
epidemic in Malaysia by the SIR model, which was also used 
by the Centers for Disease Control and Prevention (CDC) in 
USA [4]. A more complex model (SEIR) was used to model 
influenza in Vietnam, in which the country was divided into 
64 provinces and the population was divided into 7 
age-classes [5]. The model predicted that H1N1 would 
spread through half of the 64 provinces in 57 days and peak 
after 81 days. However, the results for basic reproduction 
number R0 obtained were not accurate despite the complexity 
of the model, or rather because of the complexity, since much 
of the data required to calibrate the complex model was not 
available. In lieu of this inaccuracy, the value of R0 ∈ (1.2, 
3.1) was adopted in [5] by incorporating results obtained 
from Mexico, USA and Japan. Indeed few complex models 
have been proven to be superior to the simple SIR. Further, 
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SIR model requires only two parameters to drive the infected 
population, as compared to more parameters needed in other 
models. Ultimately it is the availability of quality, timely and 
reliable data that determines the accuracy and robustness of a 
model, not the complexity of the model. The three critical 
parameters that determine the SIR model output are (i) the 
infective duration or infective period T days, (ii) the disease 
transmission efficiency β and (iii) the total population that is 
susceptible P. The product βP is called the contact rate. The 
product of these three terms R0 = βPT is called the basic 
reproduction number, which determines whether an infective 
disease will take hold in a population. An infective disease 
can sustain in a population only if R0 is greater than 1. The 
infective duration or period T for A H1N1 has been reported 
to vary between 3 to 7 days, with significant variance. As the 
duration of infection is a crucial parameter for the SIR model, 
we provide a brief literature review of this infective period in 
the following section. 

 

II. H1N1 INFECTIVE PERIOD 
The CDC in USA has stated in their H1N1 Flu Clinical and 

Public Health Guidance that in general, a person infected 
with influenza A H1N1 virus might be infectious to another 
person from the day before the onset of illness to 5-7 days 
after the onset. Children may remain infectious for a longer 
duration, up to 10 days. Infective periods have been reported 
to have a mean value of 4.1 days [6] and to vary between 4 
and 8 days [7]. Seasonal influenza A virus shedding after day 
7 is commonly reported in some populations such as elderly 
people, immuno-compromised patients and young children 
[8, 9, 10]. For seasonal influenza A virus, 54 % remain 
positive by Polymerase Chain Reaction (PCR) method 
beyond 7 days after symptoms onset and 29 % were positive 
by cell culture [11]. Among pandemic H1N1 2009-infected 
patients, the proportion of patient shedding replicating virus 
on day 8 vary from 8% to 13 % [12]. Direct estimation of 
proportion of patients who were culture positive on day 8 has 
not been conclusively done, however. False negative PCR or 
cell culture might have underestimated the proportion of 
patients shedding virus on day 8. Freeze-thaw cycle of 
culture specimen might have reduced the rate of positive 
results [13]. In Singapore, among 70 H1N1 2009 infected 
patients treated with oseltamivir (Tamiflu) and swabbed daily 
until virus clearance, 37 % were PCR-positive on day 7 of 
their illness and 9 % on day 10 [14]. This positivity rate by 
H1N1 PCR on day 7 is similar to the rate of 42 % on day 8 
reported in [12]. In China, among 421 patients with serial 
swabs test by real time PCR, the median time from onset of 
disease to negative test result by real time PCR was 6 days 
(range 1-17 days), indicating that 50 % of patients were still 
shedding virus after 6 days [15]. Hence, for the purpose of 
SIR simulations, we will adopt 5 days as the median infective 
period for A H1N1 2009 virus in our SIR model for Malaysia, 
subject to sensitivity analysis by varying the value of T 
between 3 to 7 days. We will soon demonstrate that this range 
of infection duration appears to fit the reported A H1N1 2009 
infections in Malaysia as indicated in Fig. 1.  

 

III. FLUSIM@USM 
Concerned about the potential of A H1N1 evolving into 

the next pandemic, the authors developed a Flu Simulation 
Model known as FluSiM@USM to track the evolution of this 
H1N1 2009 epidemic in Malaysia. This FluSiM model will 
be further enhanced progressively to permit simulations of 
other influenza such as H5N1 and SARS. Central to any 
model of an infectious disease epidemic for a given 
population is the assumption that new infective persons are 
generated by the mixing of uninfected susceptible persons 
with existing infective persons. Epidemic models typically 
assume that the rate of increase of new infective is 
proportional to the product of the number of susceptible (S) 
and the number of infective (I). This is a well known mass 
action assumption, which has been successfully applied to a 
wide range of human and wildlife diseases. This assumption 
implies that each susceptible and each infective are at all 
times equally accessible and exposed to each other. This 
fundamental underlying assumption of homogenous mixing 
is normally not fully satisfied in a population exposed to the 
influenza, leading to errors between model output and 
observations. This deviation is particularly true for 
population that spread over a large geographical area. Further, 
it is difficult to isolate a particular population or 
subpopulation for which the SIR model is applied, as the 
boundary is rather porous. Typically, a large infected 
population might consist of several separated subpopulations, 
to each of which the SIR model may be applied with 
individual characteristics of each subpopulation being used 
as input. However, the data required for such a detailed 
spatially explicit approach of SIR application is generally not 
available. This detailed epidemiological data was not 
available for the A H1N1 2009 influenza in Malaysia and 
indeed was not available for most countries in this current A 
H1N1 2009 influenza pandemic. This underlying deficiency 
in spatially explicit data should be duly recognized so that 
better data collection methodology may be implemented in 
future influenza surveillance.  

A susceptible individual (S) may become infected by 
contact with an infected individual (I). An infective person 
either dies or recovers after several days, after which he is no 
longer infective and is removed from the Infective 
Compartment I to the Recovered Compartment R, and is no 
longer considered as Susceptible. This constitutes the basic 
concept in the SIR model (Fig. 2), which will be briefly 
described below. Several extensions and enhancements of 
this basic SIR model to cover other scenarios such as 
vaccination, treatment and social interventions will be 
developed later. An infected person is considered infective. 
Susceptible individuals who become infected proceed from 
class S to class I, at a rate that depends on the infectiousness 
of the virus and the prevalence of infection.  

 
Figure 2.  Compartmental SIR model of disease transmission. 
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IV. MATHEMATICS OF THE BASIC SIR MODEL 
Early detection of epidemic of infectious disease requires 

both real time data and real time simulation of disease 
evolution. The data compilation and model simulation will 
provide the scientific basic for early detection of infectious 
diseases with the potential of evolving into a pandemic. 
However, some data is observable, while others are not 
observable. Observable variables are infected persons but 
hidden unobservable variables include the susceptible, for 
example. Simulation models are helpful in the understanding 
of the disease evolution, and in making possible the 
discussion of data requirement and data interpretation to 
permit optimal management of disease. In particular the 
importance of certain critical parameters such as infection 
duration T and contact rate βP can be better appreciated. This 
improved understanding of disease spread, assisted by model 
simulations, may lead to better surveillance system in the 
future. We adopt the approach of the SIR model to develop 
the flu simulation model FluSiM. The authors have 
conducted several national workshops on disease modeling 
in Malaysia. Based upon the response and request of the 
workshop participants, we have redeveloped FluSiM on C# 
programming language in order to render it more 
user-friendly. Fig. 3 shows the FluSiM log-in interface while 
Fig. 4 shows the input window, indicating the input 
parameters required by the model.  

 
Figure 3.  Flu simulation model FluSiM.interface 

 
Figure 4.  FluSiM window indicating input values. 

Let S = number of susceptible, I = number of infective, R = 
number of Recovered (Removed), and P = S + I + R, the total 
model susceptible population. Define the following 
variables. 

 Ss
P

= , Ii
P

= , Rr
P

=  , P = Total population. (1) 

Then the basic SIR model consists of the following 
ordinary differential equations. 

 ds Psi
dt

β= − ;  di Psi i
dt

β α= − ;  dr i
dt

α= . (2) 

We note that the mean duration of infection T days is 
related to α by T = 1/α. Hence T is an important parameter 
that governs the evolution of disease. Hopefully in the future, 
this T value can be reliably compiled during the disease 
evolution. However, the dynamics of disease transmission 
(represented by βP) is poorly understood. Large uncertainties 
are often embedded in this unobservable parameter. For 
example, βP was adopted to vary seasonally in the form of 
βP = γ = γ0 + γ1 cos (2πt), where γ0 ∈ (0.92α, 2.52α) and γ1 ∈ 
(0.05α, 0.80α) in [4]. The value of α was chosen to be 1/3, 
corresponding to infective period T = 3 days. Once T = 3 days 
was adopted, the values of γ0 and γ1 were then obtained by 
best fit between simulation results and real infection data to 
arrive at the value of γ0 = 1.56 and γ1 = 0.54. This implies that 
γ varies between 1.02 and 2.10 and that R0 varies between 
3.06 and 6.30. The above model simulation parameters used 
provides an initial basis for selecting model input values for 
calibrating our SIR Model for Malaysia. Seasonality is not 
important for tropical countries, hence for Malaysia, the 
seasonality amplitude is set to γ1 = 0.0. To facilitate 
discussion regarding the input of parameter values used in 
FluSiM, the following illustration is provided. 

 

V. AN ILLUSTRATIVE EXAMPLE 
For illustration purpose we choose the parameter values as 

indicated in Fig. 4. Following [4] we choose the infectious 
period T = 3 days. Then ALPHA = α = 1/T = 0.3333 per day. 
The value βP (known as the contact rate), is related to the 
basic reproduction number R0 by the relationship R0 = βPT = 
βP/α. In this case, R0 = 1.72, since βP = 0.57, or BETA = β = 
0.0057 and P = 100. Hence, BETA = 0.0057 per day; 
ALPHA = 0.3333 per day and P = 100 in Fig. 4. To run a 
typical FluSiM simulation as shown in Fig. 4, we may choose 
the following run-time parameter values: 

NLAST = 500; NTPRINT = 25; DELTD = 0.1 day.  
The above set of input run-time parameter values implies 

that we run the disease simulation for (500 x 0.1) days = 50 
days. We output the results for every 25 iterations or every 
(25 x 0.1) = 2.5 days for a duration of 50 days. Further we 
assume that the total population is P = 100, scaled for 
convenience, with 0.1 person initially infected (or 0.1 % 
infected initially to initiate the simulation). Hence we have: 
S0 = 99.9; I0 = 0.1; R0 = 0.0; P = 100. 

 

VI. SENSITIVITY ANALYSIS 
Following the earlier discussion regarding infectious 

periods reported, the infective period to be used in our SIR 
Model is chosen to vary between 3 and 7 days, with mean 
value of 5 days. The contact rate βP is related to the basic 
reproduction number R0 by the relation R0 = βPT = βP/α. 
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Before we calibrate the SIR Model with infection curve given 
in Fig. 1, we first perform sensitivity analysis to gain critical 
insights regarding the evolution of infection based upon the 
SIR concept.  

Fig. 5 shows the ratio I/P, indicating the proportion of 
infective to total susceptible population, as functions of T and 
βP. It is obvious that the infective proportion I/P increases 
with increasing values of contact rate βP. Further I/P also 
increases with increasing values of infective duration T. For 
example, with βP = 0.9 and T = 7 days (R0 = βPT = 6.3), the 
infective proportion is 55 %, implying that 55 % of 
susceptible population will be infected. If the infective 
duration T is increased to 10 days, keeping βP = 0.9 (R0 = 9.0), 
then the infective proportion will increase to 65 % of the 
susceptible population. On the other hand, reducing the 
contact rate to βP = 0.2 and T = 7 days (R0 = 1.4) will reduce 
the infective proportion to only 4 % of susceptible population. 
When T is decreased to 5 days, keeping βP = 0.2 (R0 = 1.0), 
then the infective proportion is 0.0 and the disease will not 
develop in the susceptible population. 

 
Figure 5.  Dependency of FluSiM simulation results on T and βP. 

Fig. 6 shows the time to disease peak (in days) as functions 
of T and βP. The time to peak decreases with increasing 
values of βP; and also decreases with increasing values of T. 
For example, with βP = 0.3 and T = 5 days (R0 = 1.5), the time 
to peak is about 60 days. Increasing βP and T to βP = 0.4 and 
T = 6 days (R0 = 2.4), the time to peak is reduced to only 30 
days. In this case it takes only 30 days for the disease to reach 
its peak. The shorter time to disease peak will reduce the time 
available to implement disease control measures effectively. 

 
Figure 6.  Dependency of FluSiM simulation results on T and βP. 

Having gained some insight regarding FluSiM simulation 
response to input parameter values βP and T, we now 
proceed to present nine simulated H1N1 scenarios by 
selecting three values of βP (contact rate) and three values of 
infective duration T days. We recall that T and α are related 
by Tα = 1. Hence, we choose the infection duration T = 3, 5 
and 7 days, corresponding to α = 0.3333, 0.2 and 0.1428 
respectively. For each choice of T, we select βP = 0.57, 0.77 
and 0.97, representing increasing contact rates. The value of 
P is normalized to 100, for convenience of theoretical 
analysis. The initial proportion of infected is 0.1 %. With R0 
= βPT = βP/α, this set of choices implies that R0 ∈ (1.71, 
6.79), which is comparable to the range used by CDC [4]. We 
plot the time series of the Infective Proportion I/P in Fig. 7 
and Fig. 8 and provide tabulation of Infective Proportion, 
Time to Peak and R0 in Tables I and II to gain insights.  

With βP = 0.57 and T = 3 days (R0 = 1.71), the infection 
time series peaks at day 26 and the percentage of infection is 
10 %. The time to peak is longer if the initial proportion of 
infected is reduced to 0.01 % from 0.1 %. Increasing values 
of T (corresponding to decreasing values of α) decreases the 
time to peak but increases the percentage of infective as 
shown in Table I and Fig. 7. Increasing values of βP 
(corresponding to increasing contact rate) decreases the time 
to peak but increases the percentage of infective as shown in 
Table II and Fig. 8. This implies that during the heights of 
disease transmission, efforts must be taken to reduce the 
contact rate βP (by social distancing for example) in order to 
reduce the percentage of infective. Reducing contact rate will 
increase the time to peak, which will allow additional time to 
prepare for emergency response. 
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Figure 7.  Infective ratio for βP = 0.57, T = 3, 5, 7 days.  

 

 

 
Figure 8.  Infective ratio for T = 3 days, βP = 0.57, 0.77, 0.97. 

TABLE I.  INFECTIVE AND PEAK TIME: βP = 0.57, T = 3, 5, 7 DAYS  

β = 0.0057 α = 0.3333 α = 0.2 α = 0.1428 
Time to Peak, Days 26 20 19 

% Infective 10 28 40 
R0 1.71 2.85 3.99 

TABLE II.  INFECTIVE AND PEAK TIME: T = 3 DAYS, βP = 0.57, 0.77, 0.97  

α = 0.3333 β = 0.0057 β = 0.0077 β = 0.0097 
Time to Peak, Days 26 16 12 

% Infective 10 20 29 
R0 1.71 2.31 2.91 

 

I. RESULTS AND DISCUSSION 
The basic reproduction number R0 = βPT = βP/α is defined 

as the average number of new infections that one infected 
individual generates in the entirely susceptible population 
during the time that person is infective. If R0 is greater than 1, 
an epidemic will develop; if R0 is less than 1, the outbreak 
will die down. The basic reproduction number R0 has been 
estimated to be between 1.4 and 1.6 for the recent Mexican A 
H1N1 in 2009. For the 1918-1919 pandemic strain, R0 is 
approximately 2 to 6. The value of T = 3 days chosen by CDC 
is the lower end for the range of T ∈ (3, 7) days. With good 
medical care and Tamiflu application in USA, T = 3 days may 
be appropriate for USA. For developing countries in the 
tropic, T = 3 days appears too short, based upon clinical and 
hospital observations.  

For our first SIR Model 1, we choose T = 5 days (α = 0.2 
per day), and best fit Fig. 1 by choosing the best value of βP. 
The best fit value of βP is 0.40, resulting in R0 = 2.0 with T = 
5 days or α = 0.2. This is slightly higher than the R0 values of 
between 1.4 and 1.6 estimated by the SIR model for La 
Gloria in Mexico. This value is also slightly higher than the 
R0 value of approximately 1.3 estimated for regular seasonal 
strain of influenza. The SIR Model 1 simulation results are 
plotted in Fig. 9, together with the infection figure provided 
by MOH, indicating a reasonable fit. The total number of 
susceptible persons P in the SIR Model 1 population works 

out to be about one tenth of a million or less than one percent 
of the entire Malaysian population. This low percentage of 
population exposed and susceptible to the infection may have 
been a consequence of various preventive measures taken 
during the infection period to isolate the infective persons 
from infecting the general population. This success of the 
prevention measures taken is the consequence of wisdom 
learned from the previous infectious disease SARS in 2003.  

The second scenario SIR Model 2 is simulated by choosing 
T = 3 days (with Tamiflu), following the value used by CDC. 
The comparison of MOH data with SIR Model 2 results by 
best fit was demonstrated in Fig. 10. The best fit value for βP 
is 0.50, resulting in R0 = 1.5. The final scenario SIR Model 3 
is simulated by choosing T = 7 days. The comparison of 
MOH data with SIR Model 3 results by best fit was shown in 
Fig. 11. The best fit value for βP is 0.35, implying R0 = 2.45. 
Fitting simulation results to MOH data with a two-parameter 
SIR Model has resulted in several possible sets of parameters 
(α, βP), each of which appears to fit MOH data well by 
adjusting the unknown parameters βP and T. The basic 
reproduction number R0 for the A H1N1 2009 in Malaysia 
hovers around 2.0. For the 1918-1919 pandemic strain in 
Geneva, R0 has been estimated to be between 1.2 and 3.0 for 
community-based settling, and between 2.1 and 7.3 for 
confined settling.  

 
Figure 9.  Comparison of MOH data and SIR Model 1, T = 5 days. 
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Figure 10.  Comparison of MOH data and SIR Model 2, T = 3 days. 

 
Figure 11.  Comparison of MOH data and SIR Model 3, T = 7 days. 

 

II. HYPOTHETICAL WORST-CASE SCENARIOS 
The choice of T = 7 days adopted in SIR Model 3 might 

represent a scenario close to the 1918-1919 pandemic. We 
therefore venture to simulate two hypothetical worst-case 
scenarios for Malaysia in which T = 7 days, but with higher 
values of βP = 0.7 and 0.9, corresponding to R0 = 4.9 and R0 = 
6.3 respectively. These higher values of βP may result from a 
combination of higher number of people susceptible (P) and 
higher transmission rate (β), which might result from 
recombination of swine, avian and human strains. The recent 
strain of A H1N1 2009 might subsequently evolve into a 
strain that are highly transmissible (high value of β) and to 
which more people are susceptible (higher value of P). Based 
upon the data from Fig. 5, we deduce that the total number of 
persons infected under this hypothetical worst-case scenario 
could well be many times more than what was witnessed so 
far in Malaysia in 2009. This high number of people 
potentially infected might render existing medical facilities 
grossly inadequate. Further, Fig. 6 suggests that the time to 
disease peak might be significantly reduced by higher values 
of βP. This shortened time to peak would reduce valuable 
time that is needed to plan and implement disease control 
measures. In view of the fact that the last pandemic occurred 
43 years ago, this long gestation period might just lay the 
foundation for the next pandemic that possesses the 
characteristics mentioned above to evolve into a severe 
pandemic. Hence, vigilance is absolutely essential. In the 
following section, FluSiM simulation results will be 
presented for the two hypothetical worst-case scenarios 
mentioned earlier. 

A. Worst-case scenario 1: T = 7 days, βP = 0.7, R0 = 4.9 
The worst-case scenario 1 represents a scenario for which 

T = 7 days, βP = 0.7, R0 = 4.9. As shown in Fig. 12, the new 
weekly infective cases peak several days earlier, compared to 
the scenario with βP = 0.35 (fitted to MOH data). This earlier 
time to peak can also be deduced from Fig. 6. The peak 
weekly cases simulated increases from around 3200 (MOH 
data) to 6700 cases. 

  
Figure 12.  Worst-case scenario 1: T = 7 days, βP = 0.7, R0 = 4.9 

B. Worst-case scenario 2: T = 7 days, βP = 0.7, R0 = 4.9 
The worst-case scenario 2 represents a scenario for which 

T = 7 days, βP = 0.9, R0 = 6.3. Fig 13 shows the number of 
new weekly cases simulated, indicating a peak weekly 
infective of around 8000 cases. This almost triples the peak 
weekly cases reported by MOH for the 2009 epidemic in 
Malaysia. 

  
Figure 13.  Worst-case scenario 2: T = 7 days, βP = 0.9, R0 = 6.3. 

 

III. CONCLUSION 
In this concluding section we will discuss the direction in 

which FluSiM may be enhanced for integration into a 
national influenza surveillance system. First, it is noted that 
the MOH data presented in Fig. 1 refers to the aggregate of 
infections reported over the whole country. A critical 
assumption inherent in SIR is that each susceptible and each 
infective are at all times equally accessible and exposed to 
each other. This assumption is no longer valid for a large 
population spread over a large geographical area, such as the 
whole of Malaysia. To improve model accuracy, we therefore 
need to segregate the model population that spread over large 
geographic area into smaller local homogenous 
subpopulations. The individual subpopulations are linked to 
each other by a network of movement or diffusion, to be 
parameterized in SIR model. However, the calibration of this 
spatially-explicit SIR model would require spatially-explicit 
medical surveillance data. Compilation of such data presents 
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a challenge. The enhanced SIR model should incorporate 
several control measures such as household quarantine, 
school closure and other social distancing measures. 

Several studies have suggested that household quarantine 
could be more effective than closing schools. This hypothesis 
can be tested by SIR based models to identify the optimal 
strategy of quarantine choices. Analysis on age-specific 
targeting strategies has surmised that vaccinating 80 % of 
children (less than 19 years old) would be almost as effective 
as vaccinating 80 % of the entire population, but demanding 
much less resources. Some simulation studies indicate that 
when R0 is less than 1.9, the epidemic could be significantly 
reduced if enough antiviral is available to treat only 2 to 6 % 
of the population. A combination of targeted antiviral 
prophylaxis and pre-epidemic vaccination would be 
necessary to contain a severe epidemic (R0 > 2.5). A 
combination of high levels of targeted antiviral prophylaxis, 
pre-vaccination and quarantine is needed to contain a very 
severe epidemic (R0 > 4.0). For a given population, 
simulations by SIR models would provide useful insights 
regarding the efficacy of various mitigating policies, if MOH 
compiles such quality data, and release them real time. 

The A H1N1 influenza emerged through cross species 
transmission and has been shown to have arisen due to 
recombination of swine, avian and human strains [16, 17]. 
Avian influenza is already endemic particularly in Asian 
poultry [18, 19]. New strains can emerge through 
co-infection and genetic recombination in intermediate hosts. 
Wild ducks and wading birds are considered to be a reservoir 
for influenza because they can carry all sub-types and the 
virus is avirulent to the wild avian hosts. Highly virulent 
virus can kill 50 to 70 % of infected humans. More complex 
biologically based SIR models are needed in these cases in 
order to track influenza transmission dynamics among 
multi-species (birds, pigs and humans).  

During the 1918-1919 pandemic, the mortality rate of A 
H1N1 in the city of Sao Paolo was about 1 % of the 
population. The total number of deaths recorded was 5331 
out of 523,194 inhabitants. For the Spanish Flu pandemic in 
Geneva, Switzerland, the basic reproduction number for the 
first wave was estimated to be about 1.5 while that for the 
second wave was 3.75. The overall fatality was reported to be 
4.2 %. These figures may be used as guide to assess the 
severity of any impeding H1N1 second wave infections. The 
possibility of co-infections as a source of multiple pandemic 
waves has been suggested in [20]. To what extent this 
possibility may actually lead to real multiple pandemic waves 
may be tested in part by model simulations. This modeling 
research is therefore essential and timely. 
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