
 

  
Abstract—In this paper, the application of Dominant Gain 

Concept for controlling time delay processes is considered from 
a new viewpoint. In this viewpoint, time delay is considered as 
function with infinite Right Half Plane (RHP) zeros which are 
transferred to the Left Half Plane by adding a proper transfer 
function to the open loop function. Furthermore, by defining a 
new concept, called minimum-gain frequency, the propositions 
for control system stability and the manner of choosing order 
and gain of the added transfer function are proved. Also, the 
application of this method is studied in order to simultaneously 
compensate for the Right Half Plane zeros and time-delay. 
Finally, easy application of this method is shown in an ordinary 
feedback loop as a PID controller. 
 

Index Terms—Dominant gain, PID controller, Right half 
plane zeros, Time delay compensator. 
 

I. INTRODUCTION 
Many of processes in chemical industries suffer from time 

delay, because of which the input signal to controller also has 
delay and, therefore, the performance of control system is 
poor. To improve the control system performance, some 
predictors have been used [1]. The methods which have used 
predictors can be categorized into three classifications: 

1. The methods which using a model, predict the time 
delay parameter and remove it from the open loop. 

Smith predictor was the first attempt in this field [2]; 
however, it has been lately revealed that Smith's method is 
very sensitive with respect to the model mismatches, 
particularly the error in the time delay parameter [3-8]. 
Incapability of rejecting load disturbances in the control of 
processes with integration [9-10] and inability to control 
unstable processes [11] are the other problems mentioned for 
the Smith predictor. To solve these problems, many 
researchers have presented different methods called Dead 
Time Compensators (DTCs) [9-17]. The largest deficit of 
DTC-based methods is lack of their application for process 
models in which their transfer function are irrational and the 
time-delay cannot be factored out straightly from the transfer 
function. In order to solve this problem, Ramanathan et al 
[18-20],  inspired by the Smith’s method, considered the time 
delay parameter as infinite Right Half Plane (RHP) zeros and 
divided the irrational transfer function (Ir-TF) model into two 
parts: )(sGp

+ : part of the model that includes RHP zeros and 
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)(sGp
− : part of the model that does not include RHP zeros. 

By compensating )(sGp
+  from the open loop transfer 

function and input signal to the controller, the behavior of 
open loop was changed from non-minimum phase to 
minimum phase. This method was called Generalized Smith 
Predictor (GSP). In additional, Vollmer & Raisch [21-22] 
and Zĺtek & Hlava [23] controlled the processes with 
irrational models by using H∞ control and removing 

)(sGp
+ from the open loop.  

2. The methods which predict input signal to the controller 
using a derivative mode in their controllers [24-26].  

In these methods, controllers are considered either as 
equation (1) [24] or equation (2) [25] and some of the 
parameters are fixed at a typical value (as recommended in 
the textbooks on the process control) in order to limit the 
complexity of PID controller. For example, in [24] and [25], 

di TT 4= and N=10 are proposed. 
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The advantage of these methods is their easy applications 
in industrial control loops because 93% of the industrial 
control loops have PID controllers [27]. Also, it is shown that 
if time delay is small, the performance of a PID controller 
will be better than a DTC [25]. However, if a large time delay 
exists, a DTC will have a better performance than a PID.  

3. These methods are a combination of the above two 
methods. In these methods, at first, the output signal of a 
DTC controller is identified using an identification system 
method and then the parameters of a PID controller are tuned 
so that its output signal will be the same as that of the DTC 
controller [28-29]. 

Because these methods need an identification method, they 
are seldom used in practice. 

In [30], dominant gain concept is introduced based on the 
frequency response behavior of an irrational transfer function 
and in [31], this concept was used to improve the 
performance of a time delay control system. In this method, a 
dominant-gain minimum-phase transfer function, denoted as 

)(sGmb  is added to the open loop. In this way, the 
non-minimum phase behavior of the open loop is converted 
to the minimum phase behavior and then the control loop 
performance is improved.  

In this paper, the proposed method in [31] is studied from a 
new perspective. In this viewpoint, time delay is considered 
as infinite RHP zeros and it is shown that how minimum 
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phase and non-minimum phase behavior of an irrational 
transfer function could relate to the location of zeros in the 
RHP or LHP. Furthermore, by defining a new concept, called 
minimum-gain frequency, the propositions of stability and 
the manner of choosing order and gain of )(sGmb  are proved. 
Finally, the proposed method is shown to be a combination of 
the first and second prediction methods, with no need for an 
identification method. In this method, without any need for 
the controller output identification, a PID controller could be 
designed. 

 

II. DOMINANT GAIN CONCEPT  
The concept of dominant gain was proved in [30, 31]. It 

states that “in an irrational transfer function or a QRDS 
model like stdesGsGsG −+= )()()( 21 , in which the )(1 sG  
is the time-delay-free term of the model, in any frequency 
range of  21 ωωω << , )(sG  follows the frequency 

behavior of dominant gain term in the model.   
Definition 1:if )(1 sG , stdesG −)(2  and stdesGsGsG −+= )()()( 21

are 
shown as vectors A, B, C respectively,  in the frequency in 
which A is located against B, C will have minimum length 
and will be located in the direction of the largest vector 
(Fig.1). In this situation, )( ωjG  have a minimum gain in the 
frequency response plots and the corresponding frequency 
will be shown by img ,ω .  

 

Fig.1. Vector presentation, for two cases at img ,ω
, in which )( ωjG has 

minimum gain 

The minimum gain frequencies of )( ωjG  are of primary 
importance because, in fact, the location of the zeros in a 
QRDS model or a quasi-polynomial is dependent on the gain 
domination at these frequencies. For example, if 
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In the above equations, 
img

Z
,ω is an indicator for the related 

zero to the 
img ,ω frequency. Also, from the above relations, it 

can be concluded that if:  
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=
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imgat ,ωω
BA                                   (5) 

zeros will be located on the imaginary axis. 
In figures 2 through 5, various frequency responses of a 

simple QRDS model are shown. The zeros are also drawn to 
demonstrate the correspondences between the frequency 
response and the number of model RHP zeros.  
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Fig. 2 – Frequency response of a QRDS model demonstrating an infinite 

number of LHP zeros resulting from all frequency gain domination of 
delay-free term . 

In Fig. 2, all 
img ,ω s occur in frequencies where the 

minimum phase term dominants comparing to the other term. 
Then, according to the dominant gain concept it is expected 
that all the zeros are located in LHP. As seen in Fig. 2, this 
expectation is confirmed by the reality.  
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Fig. 3 – Frequency response of a QRDS model demonstrating an infinite 

number of RHP zeros resulting from all frequency gain domination of delay 
included term. 

In Fig. 3, all the 
img ,ω s occur in locations where the 

non-minimum phase term dominants. Then, according to 
equation (3), it is expected that all the zeros are located in 
RHP. Fig. 3, confirms this expectation. 
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Fig. 4 – Frequency response of a QRDS model demonstrating an infinite 
number of RHP zeros resulting from high frequency gain domination of 
delay included term and a few number of LHP zeros resulting from low 

frequency gain domination of delay free term. 

In Fig.4, the minimum phase term dominants in 
sec/4 rad<<∞− ω . In this interval, 3

img ,ω s are located in 

this frequency range and reminders of img ,ω s occur in 

frequencies where the non-minimum phase term is dominant. 
Then, it is expected that there are 3 LHP zeros and the 
reminders of zeros are located in RHP. Fig. 4 confirms this 
expectation.  
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Fig.5 – Frequency response of a QRDS model demonstrating an infinite 
number of LHP zeros resulting from low frequency gain domination of 

delay-free term and a few number of RHP zeros resulting from high 
frequency gain domination of delay free term. 

In Fig.5, contrary to the case of Fig. 4, the non-minimum 
phase term dominants in sec/4rad<<∞− ω . In this 
interval, 3 img ,ω s and the reminders of img ,ω s occur in 

locations where the minimum phase term dominants. Then, it 
is expected that there are 3 RHP zeros and the reminders of 
zeros are located in LHP. Fig. 5, also, confirms this 
expectation.  

In control systems, the minimum phase behavior (Fig. 2) is 
much desirable. The most important point is that, if in an 
open loop with a QRDS structure, a delay-free term is a first 
order transfer function, by applying a Dominant Gain 
Constraint (DGC) on the open loop, the control system will 
become absolutely stable, in spite of the existence of 
time-delay or any high order dynamics in the process. 

Based on the above viewpoints, stability of the proposed 
method is proved in the following proposition.     
Proposition 1: in a simple open loop transfer function as 

std
sol esGsGsG −+= )()()( 21 in which )(1 sG  and )(2 sG  do 

not have any right-half plane poles, if a stable transfer 
function with an order of 1 or zero, such as )(sGmb , is added 
in a way that:  

)()( ,, imgsolimgmb jGjG ωω ≥                 (6) 

the control loop will be absolutely stable. 
As an explanation, assuming the above-mentioned 

conditions, the overall open loop transfer function will be 
)()()( sGsGsG solmbool += . If the dominant gain constraint 

(eq.6) prevails so that the overall open loop behavior 
completely traces the )(sGmb behavior and becomes a 
minimum phase function, then there will not be any RHP 
zero in the open loop.  

As is generally known, a control system in which the open 
loop is a first order transfer function is absolutely stable. 
Therefore, the proposed control system is absolutely stable, 
provided that the Dominant Gain Constraint is satisfied for 
the non-delay term at all frequencies.  
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III. COMPARING THE PROPOSED METHOD WITH A 
GENERALIZED SMITH PREDICTOR 

As mentioned before, in [18-20], a method was presented 
to compensate for the time-delay. This method is based on 
Smith predictor and because it is capable of controlling 
QRDS, it is called Generalized Smith Predictor. The control 
structure of this method is shown in Fig. 6. 

 
Fig.6- Generalized Smith Predictor 

In this method, inspired from Smith method for 
compensating for the time-delay effects, the QRDS model is 
divided into two parts; )(sGp

+ ,  part of the model which 

includes RHP zeros, and )(sGp
− , part of the model which 

does not have RHP zeros. By compensating for the effects of 
)(sGp

+  from the open loop transfer function, the open loop 

behavior will be changed from non-minimum phase to 
minimum phase. If there is no model mismatch, the open loop 
in this method will become:  

)()( sGsGloopopenGSP pc
−=                  (7) 

Then, all the RHP zeros will be removed from the open 
loop, however, in the open loop, there are LHP zeros yet. For 
this system, the characteristic equation will be:  

0)()(1 =+ − sGsG pc                              (8) 
The proposed method in [31] is based on transferring the 

RHP zeros of open loop transfer function to the LHP using 
the DGC requirement, instead of requiring a perfect model of 
the process for eliminating the time-delay from the 
characteristic equation. The proposed control structure is 
shown in Fig.7. 

 
Fig.7.The proposed control structure 

In this scheme, )(sGmb  is the Dominant Gain Delay 
Compensator (DGDC), which will be selected in a way that 
its gain becomes dominant in comparison to the gain of the 
simple open loop transfer function of, )()()()()( sGsGsGsGsG mpfcsol = . 

In this way, all the RHP zeros resulting from the time-delay 
will be converted to LHP zeros.  We may also call the )(sGmb  
as  "Model  Bypass  Phase  Limiter" (MBPL) compensator, 
due to the fact that it bypasses all the high order as well as the 
RHP zeros’ dynamics in the loop and limits the phase of open 
loop function. Thus, by using this compensator, the 
frequency response behavior of the open loop transfer 
function will change from delay behavior to non-delay 
behavior. 

The closed loop transfer functions of this system will 
become: 
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The characteristic equation is:  
0)()()()()(1 =++ sGsGsGsGsG mpfcmb          (11) 

The MBPL function " )(sGmb " should be selected as a 
minimum phase function. Its addition to the open loop by 
considering the DGC requirement (equation (6)) results in 
the conversion of all the RHP zeros in the open loop function 
to the LHP zeros.  

 

IV. COMPARING THE PROPOSED METHOD WITH A PID 
CONTROLLER 

Because of the existence of derivative mode, PID 
controllers are known to have predictive properties. But, 
tuning the controller parameters is complex due to the 
controllers’ high number of parameters. Thus, in order to 
limit the complexity of PID controllers, some parameters 
were fixed at a typical value, as recommended in the 
conventional textbooks on the process control.  

On the other hand, since in process control applications, 
more than 93% of the controllers are of PID type [27], some 
of the researchers [28, 29] have tried to transfer Smith 
predictor performance to an ordinary feedback control loop. 
To achieve this goal, a combination of the controller and 
predictor must be approximated as a controller. For example, 
if the original one is a PI controller, a combination of the 
controller and predictor is usually approximated as a PID 
controller. In these methods, PID parameters are identified or 
approximated using PI controller and predictor parameters. 
However in the proposed method it is easily converted into 
an ordinary feedback control loop without any need for 
approximation or identification. In the proposed method, if 
the controller is a PI controller and it is combined with )(sGmb , 
a PID controller is gained and, by so doing, according to Fig. 
8 and equation (12), the proposed control loop is converted to 
a conventional feedback control loop. Therefore, PID 
controller parameters are easily found using simple 
mathematical correlations. 

 
Fig. 8. Equal structure of the proposed method 
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V. CHOOSING THE ORDER AND GAIN OF 
)(sGmb  

In propositions 2 and 3, methods for selecting the order 
and gain of )(sGmb are presented.  

Proposition 2: in the proposed method, if )(sGsol is strictly 

proper, the most proper order for )(sGmb is first order and if 

)(sGsol  is proper, the most proper order for )(sGmb is zero 
order. 
Proof: in the proposed method, the overall open loop transfer 
function of )(sGool is:  

st
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where, the subscripts “ sol ” and “ ool ” refer to the simple open 
loop (without MBPL-compensator) and overall open loop, 
respectively. mbK  and solK  are static gains of the 
compensator and simple open loop transfer function, 
respectively. Also, " nb ",  " mo "  and " no " are the orders 
of polynomials )(sDmb , )(sN sol  and )(sDsol , 
respectively. Then the characteristic equation will become: 

0)()( )()()( =+ − dtsnb
mb

mo
solsol

no
solmb eDsNKsDK          (14) 

According to [32], the required condition for eliminating 
the RHP zeros from the quasi-polynomial, like the one in (12), 
is: 

⎩
⎨
⎧

≥
−≤
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⎬
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solmbsolmb KK
mononb

KK
nbmono                  (15) 

The first inequality in (15) corresponds to the high 
frequency gain domination requirement while the second one 
satisfies the low frequency gain domination requirement. In 
the mid-frequency ranges, the gain domination requirement 
can be obtained by changing the second inequality in (15) to: 

solmbmb KKK >Δ+                           (16) 

mbKΔ  is the excessive gain requirement of the 
compensator to guarantee that there is not any remaining 
RHP zeros in the overall open loop transfer function. Now, 
the pertinent argument is this: without satisfying the gain 
domination at high frequencies, it is impossible to eliminate 
all the RHP zeros from the open loop transfer function while 
the low frequency and mid frequency RHP zeros are possible 
to be eliminated perfectly by adjusting the compensator gain 
of mbK . Therefore, there should be a focus on the order of 

)(sGmb  and )(sGsol  with respect to each other in order to 
reach to a suitable order for the compensator. Thus, if )(sGsol  

is a proper transfer function, i.e., mono = , then 0=nb ; 

and if )(sGsol  is a strictly proper transfer function, i.e. 

mono > , then 1≥nb . In the last case, the less value, i.e. 
1=nb  , is more desirable. This is due to the fact that, with a 

first order dominant gain compensator, " )(sGmb ", the control 
system reaches an absolutely stable condition.  
Definition 2: The absolute stability in a simple feedback 
control loop refers to the situation in which the open loop is a 
stable delay-free first order transfer function. However, by 
applying the DGC requirement, one can impose the 
absolutely stable condition when the process is high order or 
includes time-delay.  
Proposition 3: The best value for )( ωjGmb is the minimum 
value which satisfies the DGC condition, i.e. equation (6) for 
the upper bound of )( ωjGsol uncertainty. 
Proof: Minimum value which satisfies equation (6) is: 

)()( ,, imgsolimgmb jGjG ωω =                     (17) 

Sensitivity functions for the proposed method are obtained 
as equations (18) and (19): 

)(1
)()(

1

1)(

sG
sGsG

sS

mb
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=                         (18) 

)()()(1
)()(

)(
sGsGsG
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sT

cpmb

cp

++
=                   (19) 

As seen in the above functions, to whatever level the  
)(sGmb  value is increased, S(s) increases and T(s) decreases. 

Then, the performance will be robust and sluggish by 
increasing the )(sGmb  value.  

Therefore, for the proper performance, equation (6) must 
be satisfied for the impossible minimum value of )(sGmb . 
Also, to confirm that there is not any RHP zeros in open loop, 
(17) must be satisfied for the upper bound of  

)( ωjGsol uncertainty.  
 

VI. SIMULATION 
In [31] several examples of the applications of the 

proposed method was presented for the processes with model 
mismatches, variable time delay, integral and QRDS models. 
In this paper the method is used for compensating time delay 
systems with RHP zeros simultaneously to show the widest 
applicability of the method. In this section, an example is 
presented for this case.  
Example: Assume a process model such as 

2

-4s

p 1)(s
0.1)e-(2s)s(G
+

= . For applying the proposed method, at 

first, the compensator must be selected. The way the )(sGmb  
parameters are chosen is described as the follows: 

A. Choosing the order, gain and time constant of )(sGmb  
Since, )(sG p  is a strictly proper transfer function, 

)(sGmb  is selected as the first order transfer function. In the 
first order transfer function, both the static gain and the time 
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constant are effective parameters. For simplicity in tuning the 
parameters of )(sGmb  time constant is selected as equal to 
one and )(sGmb gain is obtained so that equation (15) is 

satisfied for the upper bound of )( ωjGsol model uncertainty. 

Because )(sGc is not determined at first, )()( sGsG psol = . 

Therefore, according to equation (15), the gain of )(sGmb  

could be equal to the upper bound of )( ωjG p uncertainty. 

Then 
1

2)(
+

=
s

sGmb   is selected. In Fig. 9, AR plot for the 

proposed open loop terms are shown for the above condition. 
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Fig.9. AR plots for the proposed open loop terms when 

)()( sGsG psol =
  

B. Tuning the controller parameters  

Now, based on the selected )(sGmb , the controller 
parameters are easily determined by using any kind of tuning 
procedures. Then, according to the ISE criteria, the 

controllers are obtained as 
s

6658.02437.1)s(G cp −−=  and 

s
2122.08987.0)s(Gcf −−=  for the proposed and ordinary 

feedback methods respectively. 

C. Retuning of the compensator gain to remove all the 

RHP zeros from the )()()()( sGsGsGsG cpmbool +=  
Because in this condition, in a specific range, )(sGool is 

the non-minimum phase, the gain of )(sGmb  should be 
increased. The minimum value of the )(sGmb gain which 
results in the )(sGool ’s becoming minimum phase is 2.5. 

Then, the compensator is selected as 
1

5.2)(
+

=
s

sGmb
. In Fig. 

10, AR plot for the proposed open loop terms are shown for 
the above condition. 
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Fig.10. AR plots for the proposed open loop terms  

In Fig. 11, the proposed and feedback method responses 
are shown. It should be noted that a load disturbance equal to 

5.0−  was inputted in the control system at time 150 sec. 

 
Fig. 11.The proposed and feedback methods’ responses 

In Table 1, two responses which were mentioned in Fig. 9 
are compared. 

TABLE 1- IAE AND ISE FOR THE PROPOSED AND FEEDBACK METHODS 
RESPONSES IN FIG.9 

Undershoot ISE IAE Method 
-0.54 57 60.2 Proposed 
-0.8 68.5 68.8 Ordinary 

Feedback 
As can be seen in this table, the proposed method response 

has the lower oscillation and lower undershoots. 
 

VII. CONCLUSIONS 
In this paper, the proposed method in [31] is studied from a 

new point of view. In this viewpoint, time delay is considered 
as infinite RHP zeros and it is shown that how the minimum 
phase and non-minimum phase behaviors of an irrational 
transfer function could relate to the location of zeros in the 
RHP or LHP. Considering that in the proposed method, open 
loop frequency response was used for determining  )(sGmb  
parameters, this method does not need an exact model, which 
is an advantage for the proposed method with respect to the 
delay prediction methods (i.e., Smith predictor, Generalized 
Smith predictor and DTcs). Also, when the proposed method 
is compared with a PID controller, the tuning complexity of a 
PID controller is not observed, which is because, in the 
proposed method, derivative mode parameters were 
determined using a dominant gain constraint.   
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