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Abstract—nano-Magnesium Oxide nanoparticles (n-MgO) 

have garnered significant attention in recent decades, 

particularly in the agricultural sector, due to their exceptional 

properties, such as antifungal potency and the ability to 

promote plant growth. In this study, the ultrasound-mediated 

sol-gel method was employed to synthesize n-MgO. Various 

physicochemical characterization techniques, including 

Ultraviolet-visible spectrometry, Fourier-transform infrared 

spectroscopy, and X-ray diffraction, were used to confirm the 

formation of n-MgO. Additionally, the study assessed the 

antifungal activity of n-MgO against the plant pathogenic 

fungus Fusarium oxysporum (F. oxysporum). The disc diffusion 

method was used to determine the effectiveness of n-MgO in 

inhibiting the growth of F. oxysporum. Subsequently, the 

Minimum Inhibitory Concentration (MIC) required to 

suppress the growth of F. oxysporum was determined through a 

broth microdilution study.  Furthermore, a field study was 

conducted to evaluate the plant growth promotion capabilities 

of n-MgO. The results indicated an inhibition zone of 8.74 ± 0.16 

mm, with an MIC of 2.5 mg/mL, suggesting that n-MgO 

effectively inhibit the growth of F. oxysporum. Moreover, the 

application of n-MgO in the field study resulted in a 5.78% 

increase in the height of maize plants. Consequently, it can be 

concluded that n-MgO holds significant potential as an effective 

agrochemical product with dual functions as a fungicide and a 

plant growth promoter. 

Keywords—agrochemical, antifungal activity, Fusarium 

oxysporum, magnesium oxide, nanoparticles, plant growth 

promotion 

I. INTRODUCTION

Agriculture plays a vital role as the primary source of food 

for people worldwide [1]. However, it faces multiple global 

challenges, including the prevalence of plant diseases caused 

by various pathogens in the environment (e.g., fungi, bacteria 

[2], nematodes [3], etc.), leading to significant losses in crop 

yields. Of particular concern are phytopathogenic fungi, 

especially Fusarium spp., which cause a range of diseases 

such as fusarium wilt and stalk rot in economically important 

crops, directly affecting global food security [4]. In addition, 

the impact of Fusarium is not limited to crop production 

losses, but may also trigger the production of mycotoxins, 

posing a significant threat to human health [5, 6]. Although 

various agrochemical products are available to farmers in the 

market, these products have proven to be ineffective against 

fusarium disease. Additionally, the use of these 

agrochemicals can lead to soil and water contamination that 

may harm plants [7]. Hence, there is a pressing need for a 

novel, innovative, and eco-friendly alternative for controlling 

fusarium diseases in agriculture. 

II. LITERATURE REVIEW

Recently, various environmentally friendly and efficient 

alternatives such as plant extracts [8], essential oils [9], 

biological control [10], and engineered nanomaterials [11] 

have been widely studied for their possibility and capability 

to control phytopathogenic fungi. Among these alternatives, 

the uses of nanomaterials have been studied the most. 

Generally, engineered nanomaterials have different 

physiochemical properties compared to their bulk 

counterparts, which lead to better results when compared to 

conventional agrochemicals for plant disease control [12]. 

Up to date, different types of nanomaterials such as carbon 

nanomaterials [13], nanopolymers [14], and metal 

nanoparticles [11, 15, 16] have been studied as alternatives 

for controlling phytopathogenic fungi diseases. Metal oxide 

nanoparticles are considered to be an efficient and 

eco-friendly option for controlling phytopathogenic fungi 

diseases in the agricultural sector due to their structural 

stability, target affinity, high surface-to-volume ratio and 

nanoscale size [17]. Furthermore, the application of 

appropriate amounts of metal oxide nanoparticles helps 

increase seed germination and promote plant growth [18]. 

Nano Magnesium Oxide nanoparticles (n-MgO) is metal 

oxide nanoparticles that have received much attention 

recently. This is because of their excellent properties such as 

eco-friendliness [19], great optical transparency and stability, 

strong mechanical strength [20], and high corrosion 

resistance [21]. Recent studies have reported the 

antimicrobial activity of n-MgO, such as against P. 

aeruginosa, B. subtilis [22], E. coli, S. aureus [23], A. 

niger [24], A. oryzae [25], R. solanacearum [26], K. 

pneumoniae [27] and X. oryzae [28]. The n-MgO exhibits 

excellent antimicrobial activity due to its nanoscale size 

which could induce nanotoxicity to the microbes. For 

instance, the n-MgO can penetrate microbes due to its 

nanoscale size and cause cellular damage such as the 

formation and accumulation of reaction oxygen species as 

well as denature of ribosomes [29]. Besides, n-MgO is known 

to be environment friendly. For example, they do not affect 

the survival of Eisenia Andrei earthworm [30]. Furthermore, 

literature has pointed out the ability of n-MgO to act as a 

plant growth promoter or fertilizer [26, 31]. This is due to the 

fact that magnesium is one of the micronutrients that plant 

requires to support their fundamental function, including 

chlorophyll synthesis, photophosphorylation, 

photo-oxidation and many others [32]. Moreover, n-MgO can 
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enhance the soil’s physical and mechanical properties, 

including soil porosity, saturated hydraulic conductivity, 

water content, mean weight diameter of aggregates, and 

reduction in penetration resistance [33]. These are the strong 

evidence to prove that n-MgO has the potential to be 

developed as an antimicrobial agent for plant disease 

management.  Despite the appealing properties of n-MgO, 

the antifungal effects of n-MgO are scarcely reported. 

Furthermore, it is worth noting that the antimicrobial activity 

and plant growth promotion potential of n-MgO have 

typically been reported in separate studies, often involving 

n-MgO with varying sizes and shapes. These differences in

the size and shape of nanomaterials can lead to distinct

outcomes. Consequently, this manuscript aims to address this

gap by presenting an integrated assessment of both the

antifungal effects against F. oxysporum and the plant growth

promotion capabilities of the same n-MgO.

III. MATERIALS AND METHODS

A. Synthesis of n-MgO

The synthesis method of n-MgO was adapted from those 

described by Wong et al. [34] with slight modification. 

Briefly, equimolar of magnesium acetate tetrahydrate 

(precursor) and citric acid (gelling agent) were dissolved in 

ethanol separately for 1 h at 300 RPM. Then, both solutions 

were mixed by using magnetic stirrer at 300 RPM for 1 h. 

Formation of gel occurred during the mixing process. Next, 

the gel was ultrasonicated for 15 min. After that, the gel was 

aged at room temperature for 12 h to obtain a thicker gel. 

Next, the gel was dried in oven at 100 °C for 24 h to remove 

the excess solvent and impurity. The dried gel was then 

grounded with agate mortar and pestle to obtain fine powder. 

Lastly, the powder was calcinated in a box furnace at a 

heating rate of 5 °C/min until 650 °C for 2 h to produce 

n-MgO [35].

B. Characterization of n-MgO

Analytical techniques such as Ultraviolet-Visible (UV-Vis) 

spectroscopy, Fourier Transformed Infrared (FTIR) 

spectroscopy, and X-Ray Diffraction (XRD) were used for 

the characterization study.  

C. Fungus Culture

Common disease-causing fungi, Fusarium oxysporum was 

used in this work. They were cultured in petri dishes that 

contained Potato Dextrose Agar (PDA) at 30 °C for 10 d. 

Then, the petri dishes were kept in 4 °C fridge for further use. 

Besides, Fusarium spore solution can be prepared with the 

procedure described below. 10 mL deionized water was 

added with 2 drops of Tween 80. This Tween 80 solution was 

then sterilized by using autoclave at 121 °C and 15 psi for 20 

min. After that, the Tween 80 solution was cooled down to 

room temperature inside Class II Biohazard Safety Cabinet to 

prevent contamination. Next, 2 mL of the Tween 80 solution 

was added to the 10 d old F. oxysporum’s plate and mixed 

well by using inoculum loop. Then, the spore solution was 

obtained by filtering the mixture with gauze to remove the 

mycelium of fungi. 

D. Antifungal Assay

1) Disc diffusion method

Disc diffusion method is a quick and inexpensive assay to 

test the antifungal activity of a compound by measuring the 

Zone of Inhibition (ZOI). Firstly, a 6 mm sterile blank disc 

was impregnated with various concentration (2.5, 5, and 10 

mg/mL) of n-MgO solution, where another blank disc was 

impregnated with distilled water to serve as control.  Then, 

150 μL spore solution was spread on a fresh PDA. After that, 

the prepared blank discs were placed on the inoculated PDA. 

Next, agar plates were kept in incubator at 32 °C. The 

diameter of ZOI was measured after 24 h of incubation [36].  

2) Minimum Inhibitory Concentration (MIC)

determination

MIC indicates the lowest concentration of the test sample 

that inhibits the growth of microorganism. The MIC of 

n-MgO was determined by conducting the broth

microdilution method on 96-wells plate with the aids of a

microplate reader. Various concentrations of n-MgO (20,

17.5, 15, 12.5, 10, 7.5, 5, and 2.5 mg/mL) were used to test

against F. oxysporum [37]. Initially, 40 μL of n-MgO

solution with various concentrations were added into 8 rows

of the 96-wells plate, accordingly, followed by

100 μL Potato Dextrose Broth (PDB). Next, 40 μL of ×106

spore/mL of fungal spore suspension was inoculated to the

96-wells plate. Moreover, negative control (PDB + fungus)

was prepared in the 96-wells plate as well for comparison

purposes. After that, the 96-wells plate was incubated in the

microplate reader for 24hrs, where the absorbance readings

were taken on 0 h and 24 h. The Optical Density (OD) used

was 600 nm, which is a common OD to monitor the fungus

growth status. Then, the lowest n-MgO concentration sample

that had a lower absorbance value than the positive control

was served as MIC [37, 38]. This assay was conducted in six

replicates to ensure the accuracy of the result.

E. Field Study for Plant Growth Promotion

A field study was carried out in a greenhouse to assess the 

plant growth promotion capability of n-MgO. Briefly, 

one-month-old maize seedlings were used for this field study. 

10mL of n-MgO solution at its MIC were applied weekly 

until the maize plants reached the harvest stage. In parallel, a 

control group was grown under normal conditions. Thirty 

plants were included in each experiment to ensure the 

consistency of result. The height of maize plants was 

measured on a weekly basis throughout the course of the 

experiment as an indicator of growth. 

IV. RESULT AND DISCUSSION

A. Confirmation of n-MgO Synthesis

During the synthesis of n-MgO, white powder formation 

(as shown in Fig. 1) after the calcination process confirms the 

synthesis of n-MgO [34]. Then, the n-MgO were further 

characterized by using UV-Vis, FTIR and XRD. 
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Fig. 1. Sample of n-MgO in powder form. 

 

In the UV-Vis spectroscopy study, the maximum 

absorption wavelength (λmax) of n-MgO was determined. This 

was done by carrying out the absorption analysis from 190 

nm to 800 nm, while deionized water was used as a reference 

blank [39]. The absorption peak of n-MgO was reported in 

the range of 260–280 nm [40]. However, the λmax of the 

synthesized n-MgO was found to be 224 nm, as shown in  

Fig. 2. This discrepancy could be due to the change in particle 

size or shape formation, as a result of the modified synthesis 

method. 
 

 
Fig. 2. UV-Vis spectrum of n-MgO. 

 

On the other hand, Fig. 3 shows the FTIR spectrum of 

n-MgO, which include seven absorbance peaks at 3,699.3, 

3,431.2, 1479.8, 1420.1, 859.1, 579.6, and 546.1 cm−1. The 

absorbance peak at 3699.3 cm−1 is an impure/additional peak. 

The absorbance peak at 3431.2 cm−1 refers to the O-H stretch 

vibrational mode which shows the presence of alcohol [41]. 

Besides, the absorbance peaks at 1,479.8 and 1,420.1 cm−1 

are responsible for the C-O-H bending and C-O stretch, 

respectively which confirms the presence of carboxylic acid. 

In addition, the absorbance peak at 859.1 cm−1 is due to 

formation of periclase MgO phase [42], while absorbance 

peaks at 579.6 and 546.1 cm-1 are due to MgO vibrations [35]. 

These three absorbance peaks confirm the formation of 

n-MgO. Moreover, the FTIR spectrums are similar as the one 

reported by Jeevanandam et al. [35], which further confirm 

the formation of n-MgO. However, slight shift in peak 

wavenumbers were identify. The modified n-MgO synthesis 

method is believed to be the reason that causes the change in 

shape formation, which in turn resulted in shifted peaks [43]. 
 

 
Fig. 3. FTIR spectrum of n-MgO. 

B. Antifungal Assay 

1) Disc diffusion method 

The clear zone around the n-MgO impregnated discs 

indicates that n-MgO exhibit antifungal property against 

plant pathogenic fungus, F. oxysproum. The diameter of ZOI 

of various n-MgO concentrations against F. oxysporum are 

recorded in Table 1. Note that no ZOI was obtained in the 

case of control. This indicates that the antifungal property 

against F. oxysporum is due to n-MgO. Besides, the diameter 

of ZOI increases with increased n-MgO concentration. This 

means that the antifungal property of n-MgO against F. 

oxysporum is concentration dependent, where a higher 

n-MgO concentration results in a better fungus growth 

inhibition. 
 

Table 1. Results of disc diffusion method 

Sample ZOI ± SD* (mm) 

Deionized water 0.00 

2.5 7.12 ± 0.06 

5.0 7.63 ± 0.23 

10.0 8.74 ± 0.16 

*SD is standard deviation. 

 

2) MIC determination 

The results of microbroth dilution are summarized in 

Fig. 4. The absorbance value refers to the fungus density, 

where a higher absorbance value indicates a greater fungus 

density [44]. From Fig. 4, the negative control sample  

(0 mg/mL n-MgO) has the highest absorbance value, 

meanwhile all of the n-MgO treated samples have lower 

absorbance than the negative control. This indicates the 

n-MgO can inhibit the growth of F. oxysporum, which in 

turn resulted in lower fungus density. In current study. the 

MIC of n-MgO against F. oxysporum was reported to be  

2.5 mg/mL. This is because it is the lowest concentration 

that have shown growth inhibition towards F. oxysporum. 

Besides, the absorbance values decrease with increased 

n-MgO concentration. This means that a higher n-MgO 

concentration can better inhibit the growth of F. oxysporum. 

This finding complies with the results found in disc 

diffusion method. Similar results were reported while using 

n-MgO as antimicrobial agent against pathogenic  

microbes [38, 45]. 
 

 
Fig. 4. Microbroth dilution assay of n-MgO against F. oxysporum. 

 

C. Field Study 

A field study was conducted to assess the impact of n-MgO 

on maize plants. Fig. 5 provides a summary of the maize 

plant heights over time. As depicted in Fig. 5, the maize 

plants treated with n-MgO displayed greater height compared 

to the control group at all time points, with the exception of 
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week 1. At the harvest stage, the n-MgO treated maize plant 

was 16.17 cm taller than the control group, representing a 

5.78% increment. This is the Magnesium (Mg) element 

present in n-MgO is one of the essential micronutrients 

necessary for plant growth and development [46]. 

Magnesium plays a pivotal role in various physiological and 

biochemical processes crucial for plant health. These 

processes include facilitating energy metabolism by binding 

with ATP, promoting protein synthesis by stabilizing 

ribosomal association and activity, and supporting 

chlorophyll synthesis, which is vital for photosynthesis [11, 

32]. This provides further evidence supporting the positive 

influence of n-MgO on enhancing maize plant growth. It is 

essential to note that plant height, while a significant metric, 

does not exclusively determine the overall growth status, as 

taller plants are not inherently superior to shorter ones. 

However, increased plant height can offer several potential 

advantages [47]. For instance, taller plants can more 

effectively intercept light and gain a competitive edge, 

leading to improved resource acquisition and utilization from 

the environment, ultimately promoting overall plant  

growth [48]. Significantly, the application of n-MgO in this 

field study did not yield any adverse effects but, rather, had 

the potential to enhance the growth of maize plants. 

 

 
Fig. 5. Height of maize plant in field study. 

V. CONCLUSION 

This paper presents the successful synthesis of n-MgO 

using the ultrasound-mediated sol-gel method. The 

synthesized n-MgO was meticulously characterized using 

UV-Vis, FTIR, and XRD physicochemical characterization 

techniques. Additionally, this study evaluated the antifungal 

activity of n-MgO against F. oxysporum through the disc 

diffusion method, yielding a zone of inhibition measuring 

8.74 ± 0.16 mm. Besides, the MIC of n-MgO against F. 

oxysporum was found to be 2.5 mg/mL, which is relatively 

low when compared to the ineffective conventional fungicide. 

Moreover, the field study demonstrated that the application 

of n-MgO led to increased vertical growth in maize plants 

(16.17 cm or 5.78%), which is advantageous for light 

competition and, subsequently, overall plant growth 

improvement. As a result, n-MgO can be considered as a 

dual-action agrochemical, effectively combating fusarium 

diseases caused by F. oxysporum while simultaneously 

promoting the growth of maize plants.  
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